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ABSTRACT
We present a decade of evolution and production experience

with Jupiter datacenter network fabrics. In this period Jupiter

has delivered 5x higher speed and capacity, 30% reduction in

capex, 41% reduction in power, incremental deployment and

technology refresh all while serving live production traffic. A

key enabler for these improvements is evolving Jupiter from a
Clos to a direct-connect topology among the machine aggrega-
tion blocks. Critical architectural changes for this include: A
datacenter interconnection layer employing Micro-Electro-

Mechanical Systems (MEMS) based Optical Circuit Switches

(OCSes) to enable dynamic topology reconfiguration, central-

ized Software-Defined Networking (SDN) control for traffic

engineering, and automated network operations for incre-

mental capacity delivery and topology engineering. We show

that the combination of traffic and topology engineering on

direct-connect fabrics achieves similar throughput as Clos

fabrics for our production traffic patterns. We also optimize

for path lengths: 60% of the traffic takes direct path from

source to destination aggregation blocks, while the remain-

ing transits one additional block, achieving an average block-

level path length of 1.4 in our fleet today. OCS also achieves

3x faster fabric reconfiguration compared to pre-evolution

Clos fabrics that used a patch panel based interconnect.

CCS CONCEPTS
• Networks→ Data center networks; Traffic engineer-
ing algorithms; Network manageability;
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1 INTRODUCTION
Software-Defined Networking and Clos topologies [1, 2, 14,

24, 33] built with merchant silicon have enabled cost effec-

tive, reliable building-scale datacenter networks as the basis

for Cloud infrastructure. A range of networked services, ma-

chine learning workloads, and storage infrastructure lever-

age uniform, high bandwidth connectivity among tens of

thousands of servers to great effect.

While there is tremendous progress, managing the het-

erogeneity and incremental evolution of a building-scale

network has received comparatively little attention. Cloud

infrastructure grows incrementally, often one rack or even

one server at a time. Hence, filling an initially empty building

takes months to years. Once initially full, the infrastructure

evolves incrementally, again often one rack at a time with

the latest generation of server hardware. Typically there is

no in advance blueprint for the types of servers, storage,

accelerators, or services that will move in or out over the

lifetime of the network. The realities of exponential growth

and changing business requirements mean that the best laid

plans quickly become outdated and inefficient, making in-

cremental and adaptive evolution a necessity.
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Incremental refresh of compute and storage infrastructure
is relatively straightforward: drain perhaps one rack's worth
of capacity among hundreds or thousands in a datacenter and
replace it with a newer generation of hardware. Incremental
refresh of the network infrastructure is more challenging
as Clos fabrics require pre-building at least the spine layer
for the entire network. Doing so unfortunately restricts the
datacenter bandwidth available to the speed of the network
technology available at the time of spine deployment.

Consider a generic 3-tier Clos network comprising ma-
chine racks with top-of-the-rack switches (ToRs), aggrega-
tion blocks connecting the racks and spine blocks connecting
the aggregation blocks (Fig 1). A traditional approach to Clos
will require pre-building spine at the maximum-scale (e.g., 64
aggregation blocks with Jupiter [33]) using the technology of
the day. With 40Gbps technology, each spine would support
20Tbps burst bandwidth. As the next generation of 100Gbps
becomes available, the newer aggregation blocks can sup-
port 51.2Tbps of burst bandwidth, however, these blocks
would be limited to the 40Gbps link speed of the pre-existing
spine blocks, reducing the capacity to 20Tbps per aggrega-
tion block. Ultimately, individual server and storage capacity
would be derated because of insu�cient datacenter network
bandwidth. Increasing compute power without correspond-
ing network bandwidth increase leads to system imbalance
and stranding of expensive server capacity. Unfortunately,
the nature of Clos topologies is such that incremental refresh
of the spine results in only incremental improvement in the
capacity of new-generation aggregation blocks. Refreshing
the entire building-scale spine is also undesirable as it would
be expensive, time consuming, and operationally disruptive
given the need for fabric-wide rewiring.

We present a new end-to-end design that incorporates
Optical Circuit Switches (OCSes) [31]1 to move Jupiter from
a Clos to a block-leveldirect-connecttopology that elimi-
nates the spine switching layer and its associated challenges
altogether, and enables Jupiter to incrementally incorporate
40Gbps, 100Gbps, 200Gbps, and beyond network speeds. The
direct-connect architecture is coupled with network man-
agement, tra�c and topology engineering techniques that
allow Jupiter to cope with the tra�c uncertainty, substantial
fabric heterogeneity, and evolve without requiring any down-
time or service drains. Along with 5x higher speed, capacity,
and additional �exibility relative to the static Clos fabrics,
these changes have enabledarchitectural and incremental
30% reduction in cost and a 41% reduction in power.

This work does not raise any ethical issues.

2 JUPITER'S APPROACH TO EVOLUTION
This section provides an overview of changes in Jupiter's
architecture to address the problems introduced in Ÿ1.

1Appendix (ŸF, [41]) details the hardware design of the OCS platform and
WDM transceiver technology used in Jupiter.

Figure 1: A 3-tier Clos network comprising machine racks,
their aggregation blocks, and 40Gbs spine blocks connect-
ing the aggregation blocks. All spines are deployed on Day
1. Blocks deployed on Day 2 are outlined in blue while those
deployed on Day N are highlighted in red. Links from a
100Gbps aggregation block are derated to 40Gbps due to the
40Gbps spine.

Figure 2: An optical switching layer, DCNI (top), enables
incremental expansion in Jupiter while achieving full burst
bandwidth among the aggregation blocks (logical topology
at the bottom). The DCNI layer is implemented using Opti-
cal Circuit Switches (OCS), and allows incremental rewiring
of the fabric as new blocks are added. See Ÿ5 for details.

Figure 3: Tx/Rx diplexing using circulators and inter-
operation of coarse Wavelength Division Multiplexing
(cWDM) Optics across various generations with OCS.

The datacenter interconnection layer. Jupiter fab-
rics [33] employ merchant silicon as the basis for
aggregation and spine blocks, which in turn form a Clos
fabric for building-scale datacenters. We introducedan
optical switched datacenter network interconnection layer
(DCNI) to connect the blocks. This layer uses MEMS-based
Optical Circuit Switches (OCS) to enable fast, reliable and
e�cient restriping of links among the blocks (Fig. 2). With
restriping, we can maintain full burst bandwidth among all
aggregation blocks while incrementally adding aggregation
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Figure 4: Diminishing returns in power consumption nor-
malized to bandwidth (pJ/b) for successive generations of
switches and optics (normalized to the 40Gbps generation).

and spine blocks, removing the challenge of upfront
deployment of spines observed in Fig. 1. As we describe
later, the OCSes also enable software driven tra�c-aware
topology recon�guration (topology engineering). Ÿ3.1
describes the DCNI layer architecture in detail.
Multi-generational interoperability. The aggregation
and spine blocks are units of deployment and typically
employ the latest cost and performance competitive network
technologies of the day. However, as the lifetime of a
datacenter far exceeds the competitive span of a technology,
deployment of multiple generations in a single fabric is
inevitable. For this, Jupiter needs to allow multi-generational
switching silicon and link speeds in modular blocks to
coexist and inter-operate. Using Coarse Wavelength
Division Multiplexing 4-lane (CWDM4) optical modules at
the aggregation block interfaces is key to enabling simpler
interoperability across link generations in a heterogeneous
fabric (Fig. 3). Thanks to this interoperability, Jupiter is able
to evolve incrementally and support heterogeneity as a
norm: approximately 2/3rd of the fabrics in the �eet have
aggregation blocks of at least two generations.
Streamlining the cost of optical switching. We em-
ployed several techniques to streamline the cost of the
optical switching layer.

� Halving the needed OCS ports using circulators. We use
optical circulators (Fig. 3, Ÿ F.3) to diplex the Tx and Rx into
a single �ber strand, halving the number of OCS ports and
�ber strands needed. This introduces a minor constraint of
requiring bi-directional circuits vs. unidirectional ones - a
cost-�exibility tradeo� we chose given the tra�c patterns
observed in our datacenters.

� Incremental radix upgrades. The total tra�c from aggrega-
tion blocks depends on the level of compute and storage
capacity deployed in a block, the network bandwidth inten-
sity of the applications, and the level of intra-block locality
in tra�c. It is common that the inter-block tra�c needs
can be met with much less than the maximum inter-block
capacity of an aggregation block. Jupiter initially deploys
most blocks populating only half of optics for DCNI-facing

ports and supports radix upgrade on the live fabric later,
deferring the costs of optics and corresponding OCS ports
until needed (Ÿ3.1, [33]).

� Incremental deployment of DCNI. The number of required
DCNI ports grow incrementally as more aggregation and
spine blocks are added to the fabric. So instead of deploying
DCNI for the maximum Jupiter scale upfront, Jupiter defers
the OCS costs by supporting deployment and expansion
of the DCNI layer on the live fabric in three increments:
1•8� 1•4� 1•2� full size.

Ÿ5 describes the process to enable these incremental deploy-
ment changes and loss-free recon�guration on live fabrics.
Direct-connect architecture. Fig. 1 shows that the link
speed derating makes spines a dominant bottleneck as new
technologies with higher link speeds are introduced. While it
is possible to mitigate some of these issues by incrementally
updating spine blocks or their line cards [2], such approaches
induce cost, fabric-wide operational toil and production risk.
Our multi-tenant and building-scale fabrics have relatively
predictable tra�c patterns with uncertainty that is far from
worst-case permutation (Ÿ6.1), removing the need for non-
blocking forwarding of worst-case permutation tra�c that's
enabled by Clos topology [10]. With these observations,we
removed the spine blocks from our topology for a direct-connect
fabric (Ÿ3) enabled by tra�c and topology engineering (Ÿ4)
that jointly optimizes the inter-block forwarding and topol-
ogy to achieve short and e�cient paths, while simultaneously
accounting for estimated uncertainty in the tra�c.

Direct connect also eliminated the cost and power associ-
ated with spine blocks (Ÿ6.5). This structural opex reduction
is particularly important because upgrading to the latest
generation of hardware has diminishing returns on perfor-
mance and normalized cost of power with each successive
generation of switches and optics speed (Fig. 4).

3 THE DIRECT-CONNECT JUPITER

Jupiter's new architecture directly connects the aggregation
blocks with each other via the DCNI layer. Fig. 5 shows
incremental deployment, tra�c and topology engineering
in action in such a fabric. The initial fabric can be built with
just two blocks and then expanded (Fig. 5-1
 , 2
 ). The direct
logical links between blocks comprise three parts: physical
block-to-OCS links from each of the blocks and an OCS cross-
connect (Fig. 3). Thanks to the OCS, the logical links can be
programmatically and dynamically formed (Ÿ 5).

For homogeneous blocks, we allocate logical links equally
among all pairs of blocks. If demand perfectly matched the
logical topology, all tra�c could take the direct path between
source and destination blocks. Practically, the demand is
variable and not perfectly matched to the logical topology.
Jupiter employstra�c engineering(Ÿ4.4) with a combination
of direct and 1-hop indirect paths to balance performance
and robustness against tra�c uncertainty (Fig. 53
 ).
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Figure 5: An incrementally deployable Jupiter fabric with a direct-connect topology enhanced by dynamic tra�c and topology
engineering. 1
 : Initially, Aggregation Blocks A, B are added with 512 uplinks each. 2
 : Block C is added with 512 uplinks. Each
block has 50T outgoing demand, uniformly distributed across other blocks. Topology engineering forms a uniform mesh
topology to match the uniform steady-state demand matrix. 3
 : Tra�c Engineering (TE) adjusts Weighted Cost Multi Path
(WCMP) weights based on �ner-grained version of demand in 2
 : A sends all tra�c (20T) to B directly (pink) and splits tra�c
to C (cyan) 5:1 (25T:5T) between direct and indirect paths (via B). 4
 : Block D is added with 256 uplinks (only a subset of
machine racks in D are populated). 5
 : Block D is augmented to 512 uplinks. 6
 : Blocks C, D are refreshed to 200G link speed.

We usetopology engineering(Ÿ4.5) to further better match
the topology to demand. In Fig. 54
 , with lower demand
to/from blocks A/B/C to block D, topology engineering allo-
cates more direct links among blocks A, B, C as compared
to links to block D. We also adjust the topology based on
non-uniform tra�c demand (Fig. 5 5
 ), and link speeds of
heterogeneous blocks (Fig. 56
 ).

3.1 Datacenter Interconnection Layer

OCSes for the DCNI layer are deployed in dedicated racks.
The number of racks vary, but set on day 1 of deployment
based on the maximum projected fabric capacity. The maxi-
mum size is 32 racks, with up to 8 OCS devices per rack. A
fabric can start with one OCS per rack (1•8 populated), and
later expand the DCNI capacity by doubling OCS devices in
each rack. These expansions require manual �ber moves but
our �ber design layout constrains such moves to stay within
a rack, reducing the disruption and human e�ort.

We fan out the links of each superblock equally to all OCS.
This allows us to create arbitrary logical topologies [46].
Due to the use of circulators, each block needs to have even
number of ports attached to each OCS. These constraints ul-
timately guide the connectivity, as well as trigger expansions
of the DCNI layer as the size of the fabric grows. This design
also enables physical diversity such that a OCS rack failure
impacts each Jupiter block uniformly. For example, failure
of a rack in a 32 OCS rack deployment uniformly reduces
capacity by 1/32, irrespective of the overall size of the fabric.

Figure 6: An illustrative multi-level logical topology factor-
ization. Left: From top to bottom, we start with the block-
level graph, factorize it into 4 factors each corresponding to
a 25% failure domain (only two are shown), and �nally map
each factor to an OCS (in reality there are multiple OCSs). a,
b, ... are ports from block A, B, ..., respectively. Each block
has an even number of ports to each OCS. The two ports
are illustratively placed on the two sides (N and S) of the
OCS. The OCS can only cross-connect a N side port to a S
side port. Right: When the block-level graph changes (e.g.,
topology engineering in Ÿ4.5), at each level of factorization,
we minimize the di�erence between the new factors and the
current factors. In this example, the red factor is unchanged,
the blue factor has two logical links changed.

3.2 Logical Topology
Initially, we adopted a static and demand-oblivious topol-
ogy. For homogeneous block speed and radix, we employ a
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uniform mesh to interconnect blocks; every block pair has
equal (within one) number of direct logical links. Uniform
topology allows any block pair to burst up to a block's full
egress bandwidth with only direct and single-transit indirect
paths (Ÿ4.3). For homogeneous blocks with di�erent radices,
we set the number of links between the blocks to be propor-
tional to the product of their radices. For example, we assign
4x as many links between two radix-512 blocks as between
two radix-256 blocks. Ÿ6.1 and ŸC provide more details. In
the common case however, a fabric would comprise aggrega-
tion blocks of di�erent generations and supported speeds. In
these cases, we rely on tra�c-aware topology engineering
to optimize the throughput and pathing for the observed
demand matrix (Ÿ4.5).

After determining the top-level logical topology, we need
to factor the block-level graph to the port-level connectivity
for each OCS (Fig. 6 presents an example). We partition a
block's ports into four failure domains, each comprising 25%
of the ports (Fig. 7). Ideally failure domains should be equal
in impact, i.e., the residual topology after loss of a single
failure domain should retain� 75% of the throughput of the
original. We achieve this by imposing abalanceconstraint
that requires subgraphs corresponding to di�erent failure
domains are roughly identical. This way, if the original topol-
ogy is non-uniform, the residual topology would retain the
same proportionality as the original.

For recon�guring logical topologies, we minimize the delta
between the new and the current port-level connectivity to
in turn minimize: i) the logical links that need to be recon-
�gured, and ii) the capacity that must be drained during the
topology mutation (Ÿ5). A similar factorization problem for
spine-full topology turns out to be NP-hard [49]. We employ
a scalable approximation with a multi-level factorization
using integer programming [21]. This technique allows us
to solve any block-level topology for our largest fabric in
minutes, while keeping the number of recon�gured links
within 3% of the optimal.

4 TRAFFIC AND TOPOLOGY ENGINEERING
We discuss two levels of network adaptations in the following
sections. The �rst level, Tra�c Engineering (TE), operates
on top of the logical topology and optimizes tra�c forward-
ing across di�erent paths based on real-time demand matrix
representing communication patterns. It must manage any
imbalances in inter-block connectivity resulting from strip-
ing, failures, or management operations. The second level,
Topology Engineering (ToE), adapts the topology itself to
increase bandwidth e�ciency (Ÿ4.5).

There are two principal objectives when performing these
optimizations: throughput and e�ciency. First, we want
to satisfy the varying tra�c demand matrix while leaving
enough headroom to accommodate tra�c bursts, network
failures and maintenance. Second, we wish to utilize di-
rect paths more than indirect paths. We call the number

of block-level edges traversed by inter-block tra�cstretch. A
direct block-level path has stretch=1.0. An indirect path via
a spineblock or another aggregation block has stretch=2.0
(see an illustration in ŸA). Indirect paths consume more ca-
pacity and incur higher round-trip time (RTT), hurting �ow-
completion time (FCT) especially for small �ows (Ÿ6.4). Con-
sequently, we want to optimize for throughput and stretch,
but we must simultaneously account for tra�c uncertainty
so that the network is able to sustain good performance be-
tween successive optimization runs. In the rest of the section,
we describe the control plane elements, speci�cally the OCS
controller. Next, we dive into the designs of tra�c engineer-
ing and topology engineering, respectively. Last, we describe
their interactions.

4.1 Control Plane Design
Orion, Jupiter's SDN control plane [12] programs the data-
plane switches to achieve the desired tra�c �ow, including
for tra�c engineering. The network operations layer is used
for the topology recon�guration, including for topology en-
gineering (Ÿ5).

Orion achieves high availability by partitioning the rout-
ing function in two levels (Fig. 7). At the �rst level, each
Aggregation block is a single Orion domain. Routing Engine
(RE), Orion'sintra-domainrouting app, provides connectiv-
ity within the block, and serves as an interface for external
connectivity to other domains. Orion also programs the OCS
(Ÿ4.2): we group OCS devices into four separate Orion do-
mains (DCNI domains) each containing 25% of OCSes to
limit the blast radius in case of an OCS control plane failure.

The second level of the control hierarchy is responsible
for the links among the aggregation blocks. We partition
these links into four mutually exclusivecolors, each color
controlled by an independent Orion domain. Inter-Block
Router-Central (IBR-C), the inter-block routing app in these
domains, establishes reachability between blocks by com-
puting the inter-block forwarding paths and coordinating
routing advertisements for the inter-block links.

This design limits the impact of a single tra�c engineering
domain to 25% of the DCNI. However, this risk reduction
comes at expense of some available bandwidth optimization
opportunity as each domain optimizes based on its view of
the topology, particularly as it relates to imbalances due to
planned (e.g. drained capacity for re-stripes) or unplanned
(e.g. device failures) events.

4.2 Optical Engine Controller
The Optical Engine establishes logical connectivity among
the aggregation blocks by programming the OCS based
on cross-connect intent from the network operations
layer (Fig. 7). For uniformity with our packet switches, we
implemented an OpenFlow [25] interface to the OCSes,
where each OCS cross-connect is programmed as two �ows
that match on an input port and forward to an output port:
match {IN_PORT 1} instructions {APPLY: OUT_PORT 2}
match {IN_PORT 2} instructions {APPLY: OUT_PORT 1}
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